Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles
 
research article

Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles

Dabirian, Ali  
•
Taghavinia, Nima
2015
ACS Applied Materials & Interfaces

We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 mu m-thick N719-sensitized solar cell by 40% whereas enhancement is smaller than 2% when 100 nm ones are used. Superior performance of wavelength-scale silver particles is attributed to high-order whispering gallery modes that they support. These modes scatter the light over a wider angular range, hence increasing the density of both waveguide and resonance modes within the dye-sensitized layer.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_828.pdf

Type

Publisher's Version

Version

Published version

Access type

restricted

Size

2.34 MB

Format

Adobe PDF

Checksum (MD5)

4f1f9bbf9b679cea47a4eb9b8e416a1e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés