Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Limits on Support Recovery with Probabilistic Models: An Information-Theoretic Framework
 
conference paper

Limits on Support Recovery with Probabilistic Models: An Information-Theoretic Framework

Scarlett, Jonathan  
•
Cevher, Volkan  orcid-logo
2015
2015 IEEE International Symposium on Information Theory (ISIT)
International Symposium on Information Theory

The support recovery problem consists of deter- mining a sparse subset of a set of variables that is relevant in generating a set of observations, and arises in a diverse range of settings such as group testing, compressive sensing, and subset selection in regression. In this paper, we provide a unified approach to support recovery problems, considering general probabilistic observation models relating a sparse data vector to an observation vector. We study the information-theoretic limits for both exact and partial support recovery, taking a novel approach motivated by thresholding techniques in channel coding. We provide general achievability and converse bounds characterizing the trade-off between the error probability and number of measurements, and we specialize these bounds the linear and 1-bit compressive sensing models. Our conditions not only provide scaling laws, but also explicit matching or near- matching constant factors. Moreover, our converse results not only provide conditions under which the error probability fails to vanish, but also conditions under which it tends to one.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

SupportRecovery_ISIT.pdf

Access type

openaccess

Size

310.33 KB

Format

Adobe PDF

Checksum (MD5)

5e9389a38344d8e5699484539e51c0d9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés