Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Domain Adaptation for Microscopy Imaging
 
research article

Domain Adaptation for Microscopy Imaging

Becker, Carlos Joaquin  
•
Christoudias, C Mario
•
Fua, Pascal  
2015
IEEE Transactions on Medical Imaging

Electron and Light Microscopy imaging can now deliver high-quality image stacks of neural structures. However, the amount of human annotation effort required to analyze them remains a major bottleneck. While Machine Learning algorithms can be used to help automate this process, they require training data, which is time-consuming to obtain manually, especially in image stacks. Furthermore, due to changing experimental conditions, successive stacks often exhibit differences that are severe enough to make it difficult to use a classifier trained for a specific one on another. This means that this tedious annotation process has to be repeated for each new stack. In this paper we present a domain adaptation algorithm that addresses this issue by effectively leveraging labeled examples across different acquisitions and significantly reducing the annotation requirements. Our approach can handle complex, non-linear image feature transformations and scales to large microscopy datasets that often involve high-dimensional feature spaces and large 3D data volumes. We evaluate our approach on four challenging Electron and Light Microscopy applications that exhibit very different image modalities and where annotation is very costly. Across all applications we achieve a significant improvement over the state-of-the-art Machine Learning methods and demonstrate our ability to greatly reduce human annotation effort.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BeckerTMI14.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

6.72 MB

Format

Adobe PDF

Checksum (MD5)

4046995b09325042209afac820a43ca2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés