Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A New Basic Logic Structure for Data-Path Computation
 
conference paper

A New Basic Logic Structure for Data-Path Computation

Gaillardon, Pierre-Emmanuel
•
Amarù, Luca
•
De Micheli, Giovanni  
2014
Proceedings of the 22nd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2014)
22nd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2014)

Nowadays, Field Programmable Gate Arrays (FPGA) implement arithmetic functions using specific circuits at the logic block level, such as the carry paths, or at the structure level adopting Digital Signal Processing (DSP) blocks. Nevertheless, all these approaches, introduced to ease the realization of specific functions, are lacking of generality. In this paper, we introduce a new logic block that natively realizes arithmetic functions while preserving the versatility to implement general logic functions. It consists of a partially interconnected matrix of signal routers driven by comparators. We demonstrate that this structure can realize (i) any 2-output 2-input logic function or (ii) any single-output 3-input logic function or (iii) specific logic, such as arithmetic functions, with up to 4-output and 8-inputs. As compared to a standard 6-input Look Up Table (LUT), the proposed block requires roughly the same area but is 35.3% faster. Even though the proposed block has not the same exhaustive configurability of a 6-input LUT, there are arithmetic functions realizable in a single block that do not fit in one, or even more, 6-input LUT. For example, a single block inherently implements an entire 3-bit adder that requires 3× more resources with LUTs plus also custom circuitry. From a system level perspective, we show that a 256-bit adder is implemented with a gain on area×delay product of 31% as compared to its traditional LUT-based counterpart.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PEG_FPGA14.pdf

Access type

openaccess

Size

105.02 KB

Format

Adobe PDF

Checksum (MD5)

3077c2eb04c3ebe916a854ab7315720b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés