Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. End-point Impedance Measurements at Human Hand during Interactive Manual Welding with Robot
 
conference paper

End-point Impedance Measurements at Human Hand during Interactive Manual Welding with Robot

Erden, Mustafa Suphi  
•
Billard, Aude  
2014
Proceedings of the 2014 IEEE International Conference on Robotics & Automation (ICRA)
2014 IEEE International Conference on Robotics & Automation (ICRA)

This paper presents a study of end-point impedance measurement at human hand, with professional and novice manual welders when they are performing Tungsten Inert Gas (TIG) welding interactively with the KUKA Light Weight Robot Arm (LWR). The welding torch is attached to the KUKA LWR, which is admittance controlled via a force sensor to give the feeling of a free floating mass at its end-effector. The subjects perform TIG welding on 1.5 mm thick stainless steel plates by manipulating the torch attached to the robot. The end-point impedance values are measured by introducing external force disturbances and by fitting a mass-damper-spring model to human hand reactions. Results show that, for professionals and novices, the mass, damping and stiffness values in the direction perpendicular to the welding line are the largest compared to the other two directions. The novices demonstrate less resistance to disturbances in this direction. Two of the professionals present larger stiffness and one of them presents larger damping. This study supports the hypothesis that impedance measurements could be used as a partial indicator, if not direct, of skill level to differentiate across different levels of manual welding performances. This work contributes towards identifying tacit knowledge of manual welding skills by means of impedance measurements.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

0972.pdf

Access type

openaccess

Size

736.69 KB

Format

Adobe PDF

Checksum (MD5)

8f679f9d3cc8fa5c712904d21ca88c70

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés