Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On Routing in Distributed Hash Tables
 
conference paper

On Routing in Distributed Hash Tables

Klemm, Fabius  
•
Girdzijauskas, Sarunas
•
Le Boudec, Jean-Yves  
Show more
2007
Proceedings of the Seventh IEEE International Conference on Peer-to-Peer Computing
The Seventh IEEE International Conference on Peer-to-Peer Computing

There have been many proposals for constructing routing tables for Distributed Hash Tables (DHT). They can be classified into two groups: A) those that assume that the peers are uniformly randomly distributed in the identifier space, and B) those that allow order-preserving hash functions that lead to a skewed peer distribution in the identifier space. Good solutions for group A have been known for many years. However, DHTs in group A are limited to use randomized hashing and therefore, queries over whole identifier ranges thus do not scale. Group B can handle such queries easily. However, it is more difficult to connect the peers such that the resulting topology provides efficient routing, small routing tables, and balanced routing load. We present an elegant new solution to construct an efficient DHT for group B. Our main idea is to decouple the identifier space from the routing topology. In consequence, our DHT allows arbitrarily skewed peer distributions in the identifier space and does not require the overhead of sampling. Furthermore, the table construction is cheap and does not require active replacement of lost routing entries. To evaluate the performance of routing cost and table construction under high churn, we built an efficient simulator. Using the right data structures, we can easily process the state of over one million peers in RAM.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

P2P 2007 - On routing in Distributed Hash Tables.pdf

Access type

openaccess

Size

263.81 KB

Format

Adobe PDF

Checksum (MD5)

078ae91dd23affe8398c052d5dcc0c5c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés