Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Intensification of highly exothermic fast reaction by multi-injection microstructured reactor
 
research article

Intensification of highly exothermic fast reaction by multi-injection microstructured reactor

Haber, Julien  
•
Jiang, Bo  
•
Maeder, Thomas  
Show more
2014
Chemical Engineering and Processing: Process Intensification

Microstructured reactors (MSR) with characteristic dimensions below 100 μm are warranted to maintain close to isothermal conditions when carrying out quasi-instantaneous highly exothermic reactions. Unfortunately, such small dimensions increase the risk of clogging, create high pressure drop and are costly to number-up. The multi-injection (MI) MSR, where one of the reactants is added stepwise along the reactor length, allows working with larger dimensions (diameter >500 μm) while maintaining good temperature control. Herein presented MI-MSR is made of low temperature co-fired ceramics (LTCC) with herringbone mixing structure inside the reactor channels and is shown to mix efficiently in a large range of Reynolds numbers Re = 20–130. The cyclization of pseudoionone is studied as a model of a highly exothermic fast reaction. The temperature profiles are characterized by a quantitative infrared thermography. The developed LTCC MI-MSR allows ∼ 8-fold reduction of hot spot temperature as compared to the adiabatic temperature rise. Moreover, ∼500-fold intensification is achieved as compared to the conventional semi-batch process with reduced solvent mass by a factor of 2 while attaining a yield of target product above 98%.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2014 Haber ChEP - multi-injection microreactor - postprint_1.pdf

Access type

openaccess

Size

3.44 MB

Format

Adobe PDF

Checksum (MD5)

2d2984b55fc8fa899540b467269c5b3c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés