Publication:

Anomaly detection in the dynamics of web and social networks

cris.lastimport.scopus

2024-08-07T09:56:41Z

cris.legacyId

263213

cris.virtual.author-scopus

7004114381

cris.virtual.department

VITA

cris.virtual.department

LTS2

cris.virtual.orcid

0000-0002-9070-900X

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

229699

cris.virtual.sciperId

255928

cris.virtual.sciperId

204172

cris.virtual.sciperId

120906

cris.virtual.unitId

10380

cris.virtual.unitManager

Vandergheynst, Pierre

cris.virtual.unitManager

Alahi, Alexandre

cris.virtualsource.author-scopus

db2c2225-6885-435d-810d-fb501a65d427

cris.virtualsource.author-scopus

410d60bb-5d25-4739-88eb-1064f0a2cdd2

cris.virtualsource.author-scopus

e93797f6-ff8e-46f0-9346-d6f15baefe93

cris.virtualsource.author-scopus

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.department

db2c2225-6885-435d-810d-fb501a65d427

cris.virtualsource.department

410d60bb-5d25-4739-88eb-1064f0a2cdd2

cris.virtualsource.department

e93797f6-ff8e-46f0-9346-d6f15baefe93

cris.virtualsource.department

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.orcid

db2c2225-6885-435d-810d-fb501a65d427

cris.virtualsource.orcid

410d60bb-5d25-4739-88eb-1064f0a2cdd2

cris.virtualsource.orcid

e93797f6-ff8e-46f0-9346-d6f15baefe93

cris.virtualsource.orcid

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.rid

db2c2225-6885-435d-810d-fb501a65d427

cris.virtualsource.rid

410d60bb-5d25-4739-88eb-1064f0a2cdd2

cris.virtualsource.rid

e93797f6-ff8e-46f0-9346-d6f15baefe93

cris.virtualsource.rid

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.sciperId

db2c2225-6885-435d-810d-fb501a65d427

cris.virtualsource.sciperId

410d60bb-5d25-4739-88eb-1064f0a2cdd2

cris.virtualsource.sciperId

e93797f6-ff8e-46f0-9346-d6f15baefe93

cris.virtualsource.sciperId

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.unitId

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.unitManager

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.unitManager

8e3c94ac-a7ba-4206-9688-a73c59b5fc67

datacite.relatedIdentifier

https://zenodo.org/record/886951

datacite.relatedIdentifier

https://zenodo.org/record/886484

datacite.relatedIdentifier

https://zenodo.org/record/1342353

datacite.relationType

IsSupplementedBy

datacite.relationType

IsSupplementedBy

datacite.relationType

IsSupplementedBy

datacite.rights

openaccess

dc.contributor.author

Miz, Volodymyr

dc.contributor.author

Ricaud, Benjamin

dc.contributor.author

Benzi, Kirell

dc.contributor.author

Vandergheynst, Pierre

dc.date.accessioned

2019-01-22T11:00:16

dc.date.available

2019-01-22T11:00:16

dc.date.created

2019-01-22

dc.date.issued

2019

dc.date.modified

2025-01-23T23:53:18.335165Z

dc.description.abstract

In this work, we propose a new, fast and scalable method for anomaly detection in large time-evolving graphs. It may be a static graph with dynamic node attributes (e.g. time-series), or a graph evolving in time, such as a temporal network. We define an anomaly as a localized increase in temporal activity in a cluster of nodes. The algorithm is unsupervised. It is able to detect and track anomalous activity in a dynamic network despite the noise from multiple interfering sources. We use the Hopfield network model of memory to combine the graph and time information. We show that anomalies can be spotted with good precision using a memory network. The presented approach is scalable and we provide a distributed implementation of the algorithm. To demonstrate its efficiency, we apply it to two datasets: Enron Email dataset and Wikipedia page views. We show that the anomalous spikes are triggered by the real-world events that impact the network dynamics. Besides, the structure of the clusters and the analysis of the time evolution associated with the detected events reveals interesting facts on how humans interact, exchange and search for information, opening the door to new quantitative studies on collective and social behavior on large and dynamic datasets.

dc.description.sponsorship

LTS2

dc.identifier.doi

10.1145/3308558.3313541

dc.identifier.isi

WOS:000483508401032

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/153684

dc.relation

https://infoscience.epfl.ch/record/263213/files/Anomaly detection in the dynamics of web and social networks.pdf

dc.relation

https://infoscience.epfl.ch/record/263213/files/Anomaly detection in the dynamics of web and social networks v1.pdf

dc.relation

https://infoscience.epfl.ch/record/263213/files/Fixed typo.pdf

dc.relation.conference

The Web Conference 2019

dc.relation.ispartof

WWW '19: The World Wide Web Conference

dc.size

10

dc.subject

Anomaly Detection

dc.subject

Dynamic Network

dc.subject

Graph Algorithm

dc.subject

Hopfield Network

dc.subject

Wikipedia

dc.subject

Web Logs Analysis

dc.title

Anomaly detection in the dynamics of web and social networks

dc.type

text::conference output::conference proceedings::conference paper

dspace.entity.type

Publication

dspace.file.type

Preprint

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:263213

epfl.curator.email

pierre.devaud@epfl.ch

epfl.lastmodified.email

volodymyr.miz@epfl.ch

epfl.legacy.itemtype

Conference Papers

epfl.legacy.submissionform

CONF

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

fulltext

epfl.oai.currentset

STI

epfl.oai.currentset

conf

epfl.peerreviewed

REVIEWED

epfl.writtenAt

EPFL

oaire.citation.conferenceDate

May 13-17, 2019

oaire.citation.conferencePlace

San Francisco, California, USA

oaire.citation.endPage

1299

oaire.citation.startPage

1290

oaire.licenseCondition

CC BY

oaire.version

http://purl.org/coar/version/c_71e4c1898caa6e32

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Anomaly detection in the dynamics of web and social networks.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Anomaly detection in the dynamics of web and social networks v1.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Fixed typo.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: