Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CO(2)Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst
 
research article

CO(2)Methanation via Amino Alcohol Relay Molecules Employing a Ruthenium Nanoparticle/Metal Organic Framework Catalyst

Cui, Xinjiang  
•
Shyshkanov, Serhii  
•
Nguyen, Tu N.  
Show more
July 10, 2020
Angewandte Chemie International Edition

Methanation of carbon dioxide (CO2) is attractive within the context of a renewable energy refinery. Herein, we report an indirect methanation method that harnesses amino alcohols as relay molecules in combination with a catalyst comprising ruthenium nanoparticles (NPs) immobilized on a Lewis acidic and robust metal-organic framework (MOF). The Ru NPs are well dispersed on the surface of the MOF crystals and have a narrow size distribution. The catalyst efficiently transforms amino alcohols to oxazolidinones (upon reaction with CO2) and then to methane (upon reaction with hydrogen), simultaneously regenerating the amino alcohol relay molecule. This protocol provides a sustainable, indirect way for CO(2)methanation as the process can be repeated multiple times.

  • Details
  • Metrics
Type
research article
DOI
10.1002/anie.202004618
Web of Science ID

WOS:000546588100001

Author(s)
Cui, Xinjiang  
Shyshkanov, Serhii  
Nguyen, Tu N.  
Chidambaram, Arunraj  
Fei, Zhaofu  
Stylianou, Kyriakos C.  
Dyson, Paul J.  
Date Issued

2020-07-10

Publisher

Wiley-VCH Verlag GmbH

Published in
Angewandte Chemie International Edition
Volume

59

Issue

38

Start page

16371

End page

16375

Subjects

Chemistry, Multidisciplinary

•

Chemistry

•

co(2)chemistry

•

green chemistry

•

metal-organic frameworks

•

sustainable chemistry

•

co2 hydrogenation

•

carbon-dioxide

•

metal

•

conversion

•

selectivity

•

efficient

•

kinetics

•

capture

•

silica

•

cage

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSMO  
LCOM  
GMF  
Available on Infoscience
June 19, 2021
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/179080
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés