Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Harmonic analysis of spherical sampling in diffusion MRI
 
conference paper

Harmonic analysis of spherical sampling in diffusion MRI

Daducci, Alessandro  
•
McEwen, Jason
•
Van De Ville, Dimitri  
Show more
2011
International Soc. for Magn. Reson. Med. (ISMRM) conference
19th International Society for Magnetic Resonance in Medicine (ISMRM) conference

In the last decade diffusion MRI has become a powerful tool to non-invasively study white-matter integrity in the brain. Recently many research groups have focused their attention on multi-shell spherical acquisitions with the aim of effectively mapping the diffusion signal with a lower number of q-space samples, hence enabling a crucial reduction of acquisition time. One of the quantities commonly studied in this context is the so-called orientation distribution function (ODF). In this setting, the spherical harmonic (SH) transform has gained a great deal of popularity thanks to its ability to perform convolution operations efficiently and accurately, such as the Funk-Radon transform notably required for ODF computation from q-space data. However, if the q-space signal is described with an unsuitable angular resolution at any b-value probed, aliasing (or interpolation) artifacts are unavoidably created. So far this aspect has been tackled empirically and, to our knowledge, no study has addressed this problem in a quantitative approach. The aim of the present work is to study more theoretically the efficiency of multi-shell spherical sampling in diffusion MRI, in order to gain understanding in HYDI-like approaches, possibly paving the way to further optimization strategies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper.pdf

Access type

openaccess

Size

596.03 KB

Format

Adobe PDF

Checksum (MD5)

718ea08dc131153a507f471abbdb3aea

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés