Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water
 
research article

An innovative autonomous robotic system for on-site detection of heavy metal pollution plumes in surface water

De Vito-Francesco, Elisabetta
•
Farinelli, Alessandro
•
Yang, Qiuyue
Show more
February 1, 2022
Environmental Monitoring And Assessment

Smart monitoring has been studied and developed in recent years to create faster, cheaper, and more user-friendly on-site methods. The present study describes an innovative technology for investigative monitoring of heavy metal pollution (Cu and Pb) in surface water. It is composed of an autonomous surface vehicle capable of semiautonomous driving and equipped with a microfluidic device for detection of heavy metals. Detection is based on the method of square wave anodic stripping voltammetry using carbon-based screen-printed electrodes (SPEs). The focus of this work was to validate the ability of the integrated system to perform on-site detection of heavy metal pollution plumes in river catchments. This scenario was simulated in laboratory experiments. The main performance characteristics of the system, which was evaluated based on ISO 15839 were measurement bias (Pb 75%, Cu 65%), reproducibility (in terms of relative standard deviation: Pb 11-18%, Cu 6-10%) and the limit of detection (4 mu g/L for Pb and 7 mu g/L for Cu). The lowest detectable change (LDC), which is an important performance characteristic for this application, was estimated to be 4-5 mu g/L for Pb and 6-7 mu g/L for Cu. The life span of an SPE averaged 39 measurements per day, which is considered sufficient for intended monitoring campaigns. This work demonstrated the suitability of the integrated system for on-site detection of Pb and Cu emissions from large and medium urban areas discharging into small water bodies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s10661-021-09738-z.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

3.34 MB

Format

Adobe PDF

Checksum (MD5)

d85c3d44cf91d3e6aed67e81098dd47d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés