Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Thermal Analysis and Active Cooling Management for 3D MPSoCs
 
conference paper

Thermal Analysis and Active Cooling Management for 3D MPSoCs

Sabry, Mohamed
•
Atienza Alonso, David  
•
Coskun, Ayse Kivilcim
2011
Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS'11)
International Symposium on Circuits and Systems (ISCAS'11)

3D stacked architectures reduce communication delay in multiprocessor system-on-chips (MPSoCs) and allowing more functionality per unit area. However, vertical integration of layers exacerbates the reliability and thermal problems, and cooling is a limiting factor in multi-tier systems. Liquid cooling is a highly efficient solution to overcome the accelerated thermal problems in 3D architectures. However, liquid cooling brings new challenges in modeling and run-time management. This paper proposes a design-time/run-time thermal management policy for 3D MPSoCs with inter-tier liquid cooling. First, we perform a design-time analysis to estimate the thermal impact of liquid cooling and dynamic voltage frequency scaling (DVFS) on 3D MPSoCs. Based on this analysis, we define a set of management rules for run-time thermal management. We utilize these rules to control and adjust the liquid flow rate in order to match the cooling demand for preventing energy wastage of overcooling, while maintaining a stable thermal profile in the 3D MPSoCs. Experimental results on multi-tier 3D MPSoCs show that proposed design-time/run-time management policy prevents the system to exceed the given threshold temperature while reducing cooling energy by 50% on average and system-level energy by 18% on average in comparison to using a static worstcase flow rate setting.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ISCAS2011-C1L-M-5-2460.pdf

Access type

openaccess

Size

640.85 KB

Format

Adobe PDF

Checksum (MD5)

3bb704b2493465b7f0b816cc825fee92

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés