Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Practical considerations in using inverse dynamics on a humanoid robot: torque tracking, sensor fusion and Cartesian control laws
 
conference paper not in proceedings

Practical considerations in using inverse dynamics on a humanoid robot: torque tracking, sensor fusion and Cartesian control laws

Faraji, Salman  
•
Colasanto, Luca  
•
Ijspeert, Auke  
2015
IEEE/RSJ International Conference on Intelligent Robots and Systems

Although considering dynamics in the control of humanoid robots can improve tracking and compliance in agile tasks, it requires local and global states of the system, precise torque control and proper modeling. In this paper we discuss practical issues to implement inverse dynamics on a torque controlled robot. By modeling electrical actuators off-line, inverting such model and estimating the friction on-line, a high bandwidth torque controller is implemented. In addition, a cascade of optimization problems to fuse all the sensory data coming from IMU, joint encoders and contact force sensors estimate the robot's global state robustly. Our estimation builds the kinematic chain of the legs from the center of pressure which is more robust in case of slight slippage, tilting or rolling of the feet. Thanks to precise and fast torque control, robust state estimation and optimization-based whole body inverse dynamics, the real robot can keep balance with very small stiffness and damping in Cartesian space. It can also recover from strong pushes and perform dexterous tasks. The highly compliant and stable performance is based on pure torque control, without any joint damping or position/velocity tracking.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

root.pdf

Access type

openaccess

Size

3.82 MB

Format

Adobe PDF

Checksum (MD5)

ec58d1efb0ff69e7ccbbc69d6df08ab6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés