Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Lie group and Lie algebra variational integrators for flexible beam and plate in R3
 
report

Lie group and Lie algebra variational integrators for flexible beam and plate in R3

Weinand, Yves  
•
Ratiu, Tudor  
2012

The purpose of this research project is to develop variational integrators synchronous or asynchronous, which can be used as tools to study complex structures composed of plates and beams subjected to large deformations and stress. We consider the geometrically exact models of beam and plate, whose configuration spaces are Lie groups. These models are suitable for modeling objects subjected to large deformations, where the stored energy chosen is adapted for the types of materials used in our field (isotropic or composite).The work of J. E. Marsden, and of his doctoral and post-doctoral students, were the basis for the development of variational integrators which are symplectic and perfectly preserve symmetries. Furthermore, discrete mechanical systems with symmetry can be reduced. In addition, by a "good discretization", the strain measures are unchanged by superposed rigid motion. The idea behind this work is to take advantage of the properties of these integrators to define the equilibrium position of structures, which are generally unknown, as well as to determine the constraints, while preserving the invariants of the structure. Along with solving this problem, we continue the approach of J.E. Marsden which consists to lay the foundations of discrete mechanics, with its theorems, its axioms, its definitions, which have the same value as the laws of continuous mechanics but for a discrete domain. That is, the discrete trajectories of a motion obtained by variational integrators satisfy these discrete laws.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ScientificReport_WeinandYves.pdf

Access type

openaccess

Size

220.4 KB

Format

Adobe PDF

Checksum (MD5)

1fcac411e5aad2f8e8c46ec168ef49cb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés