Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Density functional perturbation theory for one-dimensional systems: Implementation and relevance for phonons and electron-phonon interactions
 
research article

Density functional perturbation theory for one-dimensional systems: Implementation and relevance for phonons and electron-phonon interactions

Rivano, Norma  
•
Marzari, Nicola  
•
Sohier, Thibault
June 15, 2024
Physical Review B

The electronic and vibrational properties and electron-phonon couplings of one-dimensional materials will be key to many prospective applications in nanotechnology. Dimensionality strongly affects these properties and has to be correctly accounted for in first-principles calculations. Here we develop and implement a formulation of density functional and density functional perturbation theory that is tailored for one-dimensional systems. A key ingredient is the inclusion of a Coulomb cutoff, a reciprocal-space technique designed to correct for the spurious interactions between periodic images in periodic-boundary conditions. This restores the proper one-dimensional open-boundary conditions, letting the true response of the isolated one-dimensional system emerge. In addition to total energies, forces and stress tensors, phonons and electron-phonon interactions are also properly accounted for. We demonstrate the relevance of the present method on a portfolio of realistic systems: BN atomic chains, BN armchair nanotubes, and GaAs nanowires. Notably, we highlight the critical role of the Coulomb cutoff by studying previously inaccessible polar-optical phonons and Fröhlich electron-phonon couplings. We also develop and apply analytical models to support the physical insights derived from the calculations and we discuss their consequences on electronic lifetimes. The present study unlocks the possibility to accurately simulate the linear-response properties of one-dimensional systems, sheds light on the transition between dimensionalities, and paves the way for further studies in several fields, including charge transport, optical coupling, and polaritronics.

  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevB.109.245426
Scopus ID

2-s2.0-85196838575

Author(s)
Rivano, Norma  

École Polytechnique Fédérale de Lausanne

Marzari, Nicola  

École Polytechnique Fédérale de Lausanne

Sohier, Thibault

Laboratoire Charles Coulomb

Date Issued

2024-06-15

Published in
Physical Review B
Volume

109

Issue

24

Article Number

245426

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PRNMARVEL-GE  
THEOS  
FunderFunding(s)Grant NumberGrant URL

Swiss National Science Foundation

Swiss National Supercomputing Centre

National Centre of Competence in Research MARVEL

182892

Available on Infoscience
January 21, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/243166
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés