Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Extended BIC Criterion for Model Selection
 
report

Extended BIC Criterion for Model Selection

Lapidot, I.
•
Morris, Andrew
2002

Model selection is commonly based on some variation of the BIC or minimum message length criteria, such as MML and MDL. In either case the criterion is split into two terms: one for the model (data code length/model complexity) and one for the data given the model (message length/data likelihood). For problems such as change detection, unsupervised segmentation or data clustering it is common practice for the model term to comprise only a sum of sub-model terms. In this paper it is shown that the full model complexity must also take into account the number of sub models and the labels which assign data to each sub model. From this analysis we derive an extended BIC approach (EBIC) for this class of problem. Results with artificial data are given to illustrate the properties of this procedure.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr02-42.pdf

Access type

openaccess

Size

88.13 KB

Format

Adobe PDF

Checksum (MD5)

cf59e628c69277ce11dc4e9d17785c66

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés