Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The corona theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in C-n
 
research article

The corona theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in C-n

Costea, Serban  
•
Sawyer, Eric T.
•
Wick, Brett D.
2011
Analysis & Pde

We prove that the multiplier algebra of the Drury-Arveson Hardy space H-n(2) on the unit ball in C-n has no corona in its maximal ideal space, thus generalizing the corona theorem of L. Carleson to higher dimensions. This result is obtained as a corollary of the Toeplitz corona theorem and a new Banach space result: the Besov-Sobolev space B-p(sigma) has the "baby corona property" for all sigma >= 0 and 1 < p < infinity. In addition we obtain infinite generator and semi-infinite matrix versions of these theorems.

  • Details
  • Metrics
Type
research article
DOI
10.2140/apde.2011.4.499
Web of Science ID

WOS:000299676200001

Author(s)
Costea, Serban  
Sawyer, Eric T.
Wick, Brett D.
Date Issued

2011

Published in
Analysis & Pde
Volume

4

Start page

499

End page

550

Subjects

Besov-Sobolev Spaces

•

corona Theorem

•

several complex variables

•

Toeplitz corona theorem

•

Strictly Pseudoconvex Domains

•

Kernel Hilbert-Spaces

•

Multipliers

•

Interpolation

•

Polydisk

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
GR-TR  
Available on Infoscience
June 25, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/82189
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés