Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. CO2 Capture and Release in Amine Solutions: To What Extent Can Molecular Simulations Help Understand the Trends?
 
research article

CO2 Capture and Release in Amine Solutions: To What Extent Can Molecular Simulations Help Understand the Trends?

Ma, Changru  
•
Pietrucci, Fabio  
•
Andreoni, Wanda  
September 1, 2023
Molecules

Absorption in amine solutions is a well-established advanced technology for CO2 capture. However, the fundamental aspects of the chemical reactions occurring in solution still appear to be unclear. Our previous investigation of aqueous monoethanolamine (MEA) and 2-amino-2-methyl-1,3-propanediol (AMPD), based on ab initio molecular dynamics simulations aided with metadynamics, provided new insights into the reaction mechanisms leading to CO2 capture and release with carbamate formation and dissociation. In particular, the role of water-strongly underestimated in previous computational studies-was established as essential in determining the development of all relevant reactions. In this article, we apply the same simulation protocol to other relevant primary amines, namely, a sterically hindered amine (2-amino-2-methyl-1-propanol (AMP)) and an aromatic amine (benzylamine (BZA)). We also discuss the case of CO2 capture with the formation of bicarbonate. New information is thus obtained that extends our understanding. However, quantitative predictions obtained using molecular simulations suffer from several methodological problems, and comparison among different chemical species is especially demanding. We clarify these problems further with a discussion of previous attempts to explain the different behaviors of AMP and MEA using other types of models and computations.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

molecules-28-06447.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.99 MB

Format

Adobe PDF

Checksum (MD5)

f6bc4cc60fbceeaf7c42a78160a0b3ef

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés