Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimizing the Thermodynamics and Kinetics of the Triplet-Pair Dissociation in Donor–Acceptor Copolymers for Intramolecular Singlet Fission
 
research article

Optimizing the Thermodynamics and Kinetics of the Triplet-Pair Dissociation in Donor–Acceptor Copolymers for Intramolecular Singlet Fission

Fumanal, Maria  
•
Corminboeuf, Clémence  
2022
Chemistry of Materials

Singlet fission (SF) is a two-step process in which a singlet splits into two triplets throughout the so-called correlated triplet-pair (1TT) state. Intramolecular SF (iSF) materials, in particular, have attracted growing interest as they can be easily implemented in single-junction solar cells and boost their power conversion efficiency. Still, the potential of iSF materials such as polymers and oligomers for photovoltaic applications has been partially hindered by their ability to go beyond the 1TT intermediate and generate free triplets, whose mechanism remains poorly understood. In this work, the main aspects governing the 1TT dissociation in donor–acceptor copolymers and the key features that optimize this process are exposed. First, we show that both thermodynamics and kinetics play a crucial role in the intramolecular triplet-pair separation and second, we uncover the inherent flexibility of the donor unit as the fundamental ingredient to optimize them simultaneously. Overall, these results provide a better understanding of the intramolecular 1TT dissociation process and establish a new paradigm for the development of novel iSF active materials.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

acs.chemmater.2c00367.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.93 MB

Format

Adobe PDF

Checksum (MD5)

39613a725edbd85b67eda392cf2d62b6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés