Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat
 
Loading...
Thumbnail Image
research article

Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat

Wang, Y.
•
Toledo-Rodriguez, M.
•
Gupta, A.  
Show more
2004
J Physiol

Whole-cell patch-clamp recordings followed by histochemical staining and single-cell RT-PCR were obtained from 180 Martinotti interneurones located in layers II to VI of the somatosensory cortex of Wistar rats (P13-P16) in order to examine their anatomical, electrophysiological and molecular properties. Martinotti cells (MCs) mostly displayed ovoid-shaped somata, bitufted dendritic morphologies, and axons with characteristic spiny boutons projecting to layer I and spreading horizontally across neighbouring columns more than 1 mm. Electron microscopic examination of MC boutons revealed that all synapses were symmetrical and most synapses (71%) were formed onto dendritic shafts. MCs were found to contact tuft, apical and basal dendrites in multiple neocortical layers: layer II/III MCs targeted mostly layer I and to a lesser degree layer II/III; layer IV MCs targeted mostly layer IV and to a lesser degree layer I; layer V and VI MCs targeted mostly layer IV and layer I and to a lesser degree the layer in which their somata was located. MCs typically displayed spike train accommodation (90%; n = 127) in response to depolarizing somatic current injections, but some displayed non-accommodating (8%) and a few displayed irregular spiking responses (2%). Some accommodating and irregular spiking MCs also responded initially with bursts (17%). Accommodating responses were found in all layers, non-accommodating mostly in upper layers and bursting mostly in layer V. Single-cell multiplex RT-PCR performed on 63 MCs located throughout layers II-VI, revealed that all MCs were somatostatin (SOM) positive, and negative for parvalbumin (PV) as well as vasoactive intestinal peptide (VIP). Calbindin (CB), calretinin (CR), neuropeptide Y (NPY) and cholecystokinin (CCK) were co- expressed with SOM in some MCs. Some layer-specific trends seem to exist. Finally, 24 accommodating MCs were examined for the expression of 26 ion channel genes. The ion channels with the highest expression in these MCs were (from highest to lowest); Cabeta1, Kv3.3, HCN4, Cabeta4, Kv3.2, Kv3.1, Kv2.1, HCN3, Caalpha1G, Kv3.4, Kv4.2, Kv1.1 and HCN2. In summary, this study provides the first detailed analysis of the anatomical, electrophysiological and molecular properties of Martinotti cells located in different neocortical layers. It is proposed that MCs are crucial interneurones for feedback inhibition in and between neocortical layers and columns.

  • Details
  • Metrics
Type
research article
DOI
10.1113/jphysiol.2004.073353
Web of Science ID

WOS:000225272300005

PubMed ID

15331670

Author(s)
Wang, Y.
•
Toledo-Rodriguez, M.
•
Gupta, A.  
•
Wu, C.
•
Silberberg, G.  
•
Luo, J.
•
Markram, H.  
Date Issued

2004

Published in
J Physiol
Volume

561

Issue

Pt 1

Start page

65

End page

90

Subjects

Gene Expression Profiling

Note

Division of Neurology Research, St. Elizabeth's Medical Center, Tufts University, Boston, MA 02135, USA.

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LNMC  
Available on Infoscience
February 27, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/19353
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés