Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Post-Moore's Law Fusion: High-Bandwidth Memory, Accelerators, and Native Half-Precision Processing for CPU-Local Analytics
 
conference paper

Post-Moore's Law Fusion: High-Bandwidth Memory, Accelerators, and Native Half-Precision Processing for CPU-Local Analytics

Sanca, Viktor  
•
Ailamaki, Anastasia  
August 1, 2023
Joint Workshops at 49th International Conference on Very Large Data Bases (VLDBW’23)
Workshop on Accelerating Analytics and Data Management Systems (ADMS’23)

Modern data management systems aim to provide both cutting-edge functionality and hardware efficiency. With the advent of AI-driven data processing and the post-Moore Law era, traditional memory-bound scale-up data management operations face scalability challenges. On the other hand, using accelerators such as GPUs has long been explored to offload complex analytical patterns while trading-off data movement over an interconnect. GPUs typically provide massive parallelism and high-bandwidth memory, while CPUs are near-data processors and coordinators that are often memory-bound. In this work, we provide a first look over an architecture that mixes the best of the CPU and GPU world: high-bandwidth memory (HBM), core-local accelerators for matrix multiplications (AMX), and native half-precision data processing inside 4th Generation Intel Xeon Scalable processors known as Sapphire Rapids. We analyze the system, provide an overview of its hierarchical NUMA architecture, focus on individual components, and explore their interplay and how they impact the traditional DRAM bandwidth wall on typical data access patterns and novel AI-DB interactions of vector data processing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

sanca_adms23_CR.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

456.66 KB

Format

Adobe PDF

Checksum (MD5)

7a3e2ef1ec9fc3062c25075402632c93

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés