Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths
 
research article

Volume change response and fabric evolution of granular MX80 bentonite along different hydro-mechanical stress paths

Ferrari, Alessio  
•
Bosch Llufriu, Jose Antonio  
•
Baryla, Patrycja Ewelina  
Show more
February 12, 2022
Acta Geotechnica

Despite the increasing understanding of bentonite behaviour, there is still missing evidence on how different hydro-mechanical loadings, including sequences of hydration and compression, affect the fabric and the volume change behaviour of the material. It is generally assumed that the interplay between the behaviour of clay assemblages and the overall fabric of the material is the reason of having final states that are dependent on the stress path followed. Here the results of an experimental campaign aiming to study these factors are reported and discussed. Free swelling and swelling pressure tests were performed, both followed by compression to a relatively high stress. The experimental program involved various samples that were dismantled at intermediate states in order to perform microstructural observations by means of mercury intrusion porosimetry and electronic scanning microscopy. It was observed that while the void ratio at a given stress level depends on the stress path, subsequent compression led to a unique virgin compression line. The data obtained at the microscale gave further insight for an interpretation of the volume change behaviour observed at the macroscale, showing that at high stress the material tends to recover the same fabric regardless of the path to saturation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Ferrari2022_Article_VolumeChangeResponseAndFabricE.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.52 MB

Format

Adobe PDF

Checksum (MD5)

fb73dc692925c44bc95294193728a254

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés