Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Generic direct summands of tensor products for simple algebraic groups and quantum groups at roots of unity
 
doctoral thesis

Generic direct summands of tensor products for simple algebraic groups and quantum groups at roots of unity

Gruber, Jonathan  
2022

Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new techniques for studying Krull-Schmidt decompositions of tensor products of G-modules. More specifically, we use minimal complexes of tilting modules to define a tensor ideal of singular G-modules, and we show that, up to singular direct summands, taking tensor products of G-modules respects the decomposition of Rep(G) into linkage classes. In analogy with the classical translation principle, this allows us to reduce questions about tensor products of G-modules in arbitrary l-regular linkage classes to questions about tensor products of G-modules in the principal block of G. We then identify a particular non-singular indecomposable direct summand of the tensor product of two simple G-modules in the principal block (with highest weights in two given l-alcoves), which we call the generic direct summand because it appears generically in Krull-Schmidt decompositions of tensor products of simple G-modules (with highest weights in the given l-alcoves). We initiate the study of generic direct summands, and we use them to prove a necessary condition for the complete reducibility of tensor products of simple G-modules, when G is a simple algebraic group of type A_n.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH10035.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

1.41 MB

Format

Adobe PDF

Checksum (MD5)

04d55577f84aac4507506fea6237d609

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés