Shake table tests on nonlinear steel fuses for the acceleration-control of nonstructural components
During recent major earthquakes, modern seismically designed buildings have demonstrated a low risk of collapse and life-safety limit states. However, both direct and indirect economic losses are often primarily due to damage to nonstructural components. This damage can be significant even under the more frequent low- or moderate-intensity earthquakes, as corroborated by system-level numerical studies, since it can result in greatly amplified forces and accelerations transmitted into the nonstructural components. Recent numerical research has demonstrated that this can be affordably and practically done by connecting the component to the structure via sacrificial controlled-strength steel fuses, designed to yield at desirable force levels and hence limiting the forces and damage in the nonstructural component. A shake table testing campaign was undertaken at the University of Bristol to experimentally validate this concept. The tests involved 14 specimens comprising different masses and tuned fuse geometries subjected to recorded floor motions, resulting in a total of 45 dynamic tests. The testing campaign, the instrumentation, the processing, and deduction of the response histories are described in detail. The resulting dataset is curated, organized, and made publicly available through an online repository to support further numerical and computational research on damage-free structures.
University of Southampton
International Hellenic University
University of Bristol
University of Bristol
University of Bristol
National Technical University of Athens
École Polytechnique Fédérale de Lausanne
Stanford University
University of Bristol
2025-06-25
REVIEWED
EPFL