Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. A Unified Framework for Max-Min and Min-Max Fairness with Applications
 
report

A Unified Framework for Max-Min and Min-Max Fairness with Applications

Radunovic, Bozidar  
•
Le Boudec, Jean-Yves  
2002

Max-min fairness is widely used in various areas of networking. In every case where it is used, there is a proof of existence and one or several algorithms for computing the max-min fair allocation; in most, but not all cases, they are based on the notion of bottlenecks. In spite of this wide applicability, there are still examples, arising in the context of mobile or peer-to-peer networks, where the existing theories do not seem to apply directly. In this paper, we give a unifying treatment of max-min fairness, which encompasses all existing results in a simplifying framework, and extends its applicability to new examples. First, we observe that the existence of max-min fairness is actually a geometric property of the set of feasible allocations (uniqueness always holds). There exist sets on which max-min fairness does not exist, and we describe a large class of sets on which a max-min fair allocation does exist. This class contains the compact, convex sets of $\RR^N$, but not only. Second, we give a general purpose, centralized algorithm, called Max-min Programming, for computing the max-min fair allocation in all cases where it exists (whether the set of feasible allocations is in our class or not). Its complexity is of the order of $N$ linear programming steps in $\RR^N$, in the case where the feasible set is defined by linear constraints. We show that, if the set of feasible allocations has the free-disposal property, then Max-min Programming degenerates to a simpler algorithm, called Water Filling, whose complexity is much less. Free disposal corresponds to the cases where a bottleneck argument can be made, and Water Filling is the general form of all previously known centralized algorithms for such cases. Our derivations are based on the relation between max-min fairness and leximin ordering. All our results apply mutatis mutandis to min-max fairness. Our results apply to weighted, unweighted and util-max-min and min-max fairness. Distributed algorithms for the computation of max-min fair allocations are left outside the scope of this paper.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IC_TECH_REPORT_200248.pdf

Access type

openaccess

Size

149.55 KB

Format

Adobe PDF

Checksum (MD5)

a3ad218b2734d38b218e9361a95c289a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés