Learning the intrinsic dynamics of spatio-temporal processes through Latent Dynamics Networks
Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equations, thus demanding extensive computational resources. In contrast, data-driven approaches leverage deep learning algorithms to describe system evolution in low-dimensional spaces. We introduce an architecture, termed Latent Dynamics Network, capable of uncovering low-dimensional intrinsic dynamics in potentially non-Markovian systems. Latent Dynamics Networks automatically discover a low-dimensional manifold while learning the system dynamics, eliminating the need for training an auto-encoder and avoiding operations in the high-dimensional space. They predict the evolution, even in time-extrapolation scenarios, of space-dependent fields without relying on predetermined grids, thus enabling weight-sharing across query-points. Lightweight and easy-to-train, Latent Dynamics Networks demonstrate superior accuracy (normalized error 5 times smaller) in highly-nonlinear problems with significantly fewer trainable parameters (more than 10 times fewer) compared to state-of-the-art methods.|Predicting the evolution of dynamical systems remains challenging, requiring high computational effort or effective reduction of the system into a low-dimensional space. Here, the authors present a data-driven approach for predicting the evolution of systems exhibiting spatiotemporal dynamics in response to external input signals.
document.pdf
Publisher's version
openaccess
CC BY
6.96 MB
Adobe PDF
cf38cb0583a6399feeca8834dc8b7ec2