Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Correlation between anionic substitution and structural properties in AlCr(OxN1-x) coatings deposited by lateral rotating cathode arc PVD
 
research article

Correlation between anionic substitution and structural properties in AlCr(OxN1-x) coatings deposited by lateral rotating cathode arc PVD

Najafi, H.  
•
Karimi, A.
•
Dessarzin, P.
Show more
2011
Thin Solid Films

The influence of oxygen content on the properties of cathodic arc-deposited AlCr(OxN1-x) coatings has been studied. All samples were prepared in a nitrogen-rich mixture of N-2 and O-2 at 550 degrees C using lateral rotating arc cathodes (LARC) technology together with a pulsed bias voltage. The obtained coatings were characterized by various techniques including XRD, EPMA, TEM, pin-on-disk wear tests and nanoindentation. The results obtained allow to classify the coatings into three groups with respect to their microstructure, mechanical properties and oxygen content, x. For the first group of samples with x <= 0.6, single-phase films of (Al,Cr) OxN1-x with fcc lattice were obtained, with well-developed columnar structure and a hardness of 30 to 33 GPa. In the second group, a diffuse columnar structure was observed while the fcc lattice was still present despite the large proportion of oxygen, 0.60.97, where a well-crystalline alpha-(Al,Cr)(2)O-3 corundum phase was observed and the hardness increased again to 28 GPa. Our results indicate that the second group of coatings is metastable and after heat treatment transforms to a composite of cubic oxynitride and corundum oxide. Both friction and wear of samples from the entire investigated compositional range were studied at room temperature and 600 degrees C. The low wear rates observed for the oxynitride coatings underline their potential for use in turning and milling applications. (C) 2011 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.tsf.2011.08.075
Web of Science ID

WOS:000299233000043

Author(s)
Najafi, H.  
Karimi, A.
Dessarzin, P.
Morstein, M.
Date Issued

2011

Published in
Thin Solid Films
Volume

520

Start page

1597

End page

1602

Subjects

Alumina

•

Oxynitride

•

Pin-on-disk test

•

Rotating arc cathodes

•

Tem

•

alpha-(Al,Cr)(2)O-3

•

Austenitic Stainless-Steel

•

Oxynitride Thin-Films

•

Mechanical-Properties

•

Chromium-Nitride

•

Phase-Stability

•

Oxygen-Content

•

Hard Coatings

•

Microstructure

•

Evaporation

•

Temperature

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ICMP  
Available on Infoscience
June 25, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/82225
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés