Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Band structure effects on the superconductivity in Hubbard models
 
research article

Band structure effects on the superconductivity in Hubbard models

Cho, Weejee
•
Thomale, Ronny  
•
Raghu, Srinivas
Show more
2013
Physical Review B

We study the influence of the band structure on the symmetry and superconducting transition temperature in the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a function of increasing nematicity, starting from the square-lattice (zero nematicity) limit where a nodal d-wave state is strongly preferred, there is a smooth evolution to the quasi-1D limit, where a striking near-degeneracy is found between a p-wave- and a d-wave-type paired states with accidental nodes on the quasi-one-dimensional Fermi surfaces-a situation that may be relevant to the Bechgaard salts. (2) In a bilayer system, we find a phase transition as a function of increasing bilayer coupling from a d-wave to an s(+/-)-wave state reminiscent of the iron-based superconductors. (3) When an antinodal gap is produced by charge-density-wave order, not only is the pairing scale reduced, but the symmetry of the pairs switches from d(x2-y2) to d(xy); in the context of the cuprates, this suggests that were the pseudogap entirely due to a competing CDW order, this would likely cause a corresponding symmetry change of the superconducting order (which is not seen in experiment).

  • Details
  • Metrics
Type
research article
DOI
10.1103/PhysRevB.88.064505
Web of Science ID

WOS:000323032300005

Author(s)
Cho, Weejee
Thomale, Ronny  
Raghu, Srinivas
Kivelson, Steven A.
Date Issued

2013

Publisher

Amer Physical Soc

Published in
Physical Review B
Volume

88

Issue

6

Article Number

064505

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ITP  
Available on Infoscience
October 1, 2013
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/95628
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés