Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Preparing initial conditions for rotational resonance in solid state NMR spectroscopy
 
research article

Preparing initial conditions for rotational resonance in solid state NMR spectroscopy

Geen, Helen
•
Levitt, Malcolm H.
•
Bodenhausen, Geoffrey  
1992
Chemical Physics Letters

The internuclear distance between two homonuclear dipolar-coupled dil. spins-1/2, SA and SX, can be measured by rotational resonance expts. in solid state NMR. These involve rotating the sample at the magic angle while fulfilling the condition for rotational resonance, WA-WX= nwr, where WA and WX are the isotropic shifts. Interpretation of the results is simplest if the spin system is prepd. in a state of pure difference polarization, described by an initial d. operator V(t = 0) = D = SAz-SXz, regardless of the orientation of the crystallites. Prepn. of such a state is a nontrivial task if the chem. shift anisotropy w0DVA,X of one (or both) of the sites is comparable to the difference in isotropic shifts WA-WX and hence to the required spinning speed wr = (WA-WX)/n. It is shown how the difference polarization state D can be prepd. by combining total sideband suppression (TOSS) sequences with their time-reversed counterparts, or by more condensed sequences of rotor-synchronized p pulses. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1016/0009-2614(92)87002-7
Author(s)
Geen, Helen
Levitt, Malcolm H.
Bodenhausen, Geoffrey  
Date Issued

1992

Publisher

Elsevier

Published in
Chemical Physics Letters
Volume

200

Issue

4

Start page

350

End page

6

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LRMB  
Available on Infoscience
February 22, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225563
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés