Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN
 
research article

Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN

Masid, Maria  
•
Ataman, Meric
•
Hatzimanikatis, Vassily  
June 4, 2020
Nature Communications

Altered metabolism is associated with many human diseases. Human genome-scale metabolic models (GEMs) were reconstructed within systems biology to study the biochemistry occurring in human cells. However, the complexity of these networks hinders a consistent and concise physiological representation. We present here redHUMAN, a workflow for reconstructing reduced models that focus on parts of the metabolism relevant to a specific physiology using the recently established methods redGEM and lumpGEM. The reductions include the thermodynamic properties of compounds and reactions guaranteeing the consistency of predictions with the bioenergetics of the cell. We introduce a method (redGEMX) to incorporate the pathways used by cells to adapt to the medium. We provide the thermodynamic curation of the human GEMs Recon2 and Recon3D and we apply the redHUMAN workflow to derive leukemia-specific reduced models. The reduced models are powerful platforms for studying metabolic differences between phenotypes, such as diseased and healthy cells. The complexity of genome-scale metabolic networks (GEMs) hinders their application in specific physiological contexts. Here, the authors introduce a framework to reduce thermodynamically curated GEMs to the subnetworks of interest and demonstrate its application by deriving leukemia-specific models.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-020-16549-2.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.29 MB

Format

Adobe PDF

Checksum (MD5)

0e39608655a97fadb24d3ba018a6cc11

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés