Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimization of microfluidic single cell trapping for long-term on-chip culture
 
research article

Optimization of microfluidic single cell trapping for long-term on-chip culture

Kobel, Stefan  
•
Valero, Ana  
•
Latt, Jonas
Show more
2010
Lab on a Chip

The poor efficiency of microfluidic single cell trapping is currently restricting the full potential of state-of-the-art single cell analyses. Using fluid dynamics simulations in combination with particle image velocimetry to systematically optimize trap architectures, we present a microfluidic chip with enhanced single cell trapping and on-chip culture performance. Upon optimization of trap geometries, we measured trapping efficiencies of up to 97%. Our device also enables the stable, relatively long-term culture of individual non-adherent mammalian cells in high-throughput without a significant decrease in cell viability. As a first application of this platform we demonstrate the automated separation of the two daughter cells generated upon single cell division. The reliable trapping and re-trapping of mammalian cells should for example provide the fundament for novel types of investigations in stem cell and tumour cell biology, which depend on reliable tracking of genealogical relationships such as in stem cell lineage tracking.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Valero'2010.pdf

Access type

openaccess

Size

338.24 KB

Format

Adobe PDF

Checksum (MD5)

e199277aba2ec32ae99fde1977e96f86

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés