Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Single-Shot CNN-Based Ultrasound Imaging with Sparse Linear Arrays
 
conference paper

Single-Shot CNN-Based Ultrasound Imaging with Sparse Linear Arrays

Perdios, Dimitris  
•
Vonlanthen, Manuel  
•
Martinez, Florian  
Show more
January 1, 2020
Proceedings Of The 2020 Ieee International Ultrasonics Symposium (Ius)
IEEE International Ultrasonics Symposium (IEEE IUS)

Sparse arrays are a topic of high interest within the ultrasound (US) imaging community, because of their promising ability to reduce costs, complexity, energy consumption, and data transfer requirements of US systems, thus addressing the main challenges of 3-D and portable 2-D systems. Undersampling a transducer array usually results in a significant increase in imaging artifacts, caused primarily by higher grating lobe (GL) levels. Thus, state-of-the-art sparse arrays design strategies focus on avoiding GLs, while compromising on the resulting image resolution and uniformity. In this work, we investigated the applicability of convolutional neural network (CNN)-based image reconstruction, having recently proven its potential in reducing GL artifacts, for reconstructing images from single unfocused acquisitions using uniformly undersampled linear array configurations on receive. The proposed reconstruction method consists of first computing a low-quality estimate from the undersampled single-shot acquisitions using a delay-and-sum (DAS) algorithm, followed by applying a real-time-capable CNN, trained specifically to reduce diffraction artifacts. Experiments were conducted within a simulation environment, in the context of plane wave imaging on a numerical test phantom dedicated to US image quality assessment. The proposed approach achieved an image comparable or better to that obtained from conventional DAS beamforming using the full array with uniformly undersampled arrays up to a factor of three, demonstrating a promising potential for sparse array imaging in general.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ius2020-dl-sparse-preprint.pdf

Type

Preprint

Version

Access type

openaccess

License Condition

copyright

Size

3.91 MB

Format

Adobe PDF

Checksum (MD5)

25b1a718737c27f0fb5b83317ff32de5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés