Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. 4 f occupancy and magnetism of rare-earth atoms adsorbed on metal substrates
 
research article

4 f occupancy and magnetism of rare-earth atoms adsorbed on metal substrates

Singha, Aparajita  
•
Baltic, Romana  
•
Donati, Fabio  
Show more
2017
Physical Review B

We report x-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements as well as multiplet calculations for Dy, Ho, Er, and Tm atoms adsorbed on Pt(111), Cu(111), Ag(100), and Ag(111). In the gas phase, all four elements are divalent and we label their 4f occupancy as 4f(n). Upon surface adsorption, and depending on the substrate, the atoms either remain in that state or become trivalent with 4f(n-1) configuration. The trivalent state is realized when the sum of the atomic correction energies (4f -> 5d promotion energy E-fd + intershell coupling energy delta E-c) is low and the surface binding energy is large. The latter correlates with a high substrate density of states at the Fermi level. The magnetocrystalline anisotropy of trivalent RE atoms is larger than the one of divalent RE atoms. We ascribe this to the significantly smaller covalent radius of the trivalent state compared to the divalent one for a given RE element. For a given valency of the RE atom, the anisotropy is determined by the overlap between the spd states of the RE and the d states of the surface. For all investigated systems, the magnetization curves recorded at 2.5 K show absence of hysteresis indicating that magnetic relaxation is faster than about 10 s.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Singha_17_PRB.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.66 MB

Format

Adobe PDF

Checksum (MD5)

2ea0dd80daf77cdfa243aa0853352046

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés