Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. TRACKASTRA: Transformer-Based Cell Tracking for Live-Cell Microscopy
 
conference paper

TRACKASTRA: Transformer-Based Cell Tracking for Live-Cell Microscopy

Gallusser, Benjamin  
•
Weigert, Martin  
Leonardis, Aleš
•
Ricci, Elisa
Show more
2025
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
18th European Conference on Computer Vision

Cell tracking is a ubiquitous image analysis task in live-cell microscopy. Unlike multiple object tracking (MOT) for natural images, cell tracking typically involves hundreds of similar-looking objects that can divide in each frame, making it a particularly challenging problem. Current state-of-the-art approaches follow the tracking-by-detection paradigm, i.e. first all cells are detected per frame and successively linked in a second step to form biologically consistent cell tracks. Linking is commonly solved via discrete optimization methods, which require manual tuning of hyperparameters for each dataset and are therefore cumbersome to use in practice. Here we propose Trackastra, a general purpose cell tracking approach that uses a simple transformer architecture to directly learn pairwise associations of cells within a temporal window from annotated data. Importantly, unlike existing transformer-based MOT pipelines, our learning architecture also accounts for dividing objects such as cells and allows for accurate tracking even with simple greedy linking, thus making strides towards removing the requirement for a complex linking step. The proposed architecture operates on the full spatio-temporal context of detections within a time window by avoiding the computational burden of processing dense images. We show that our tracking approach performs on par with or better than highly tuned state-of-the-art cell tracking algorithms for various biological datasets, such as bacteria, cell cultures and fluorescent particles. We provide code at https://github.com/weigertlab/trackastra.

  • Details
  • Metrics
Type
conference paper
DOI
10.1007/978-3-031-73116-7_27
Scopus ID

2-s2.0-85208550325

Author(s)
Gallusser, Benjamin  

École Polytechnique Fédérale de Lausanne

Weigert, Martin  

École Polytechnique Fédérale de Lausanne

Editors
Leonardis, Aleš
•
Ricci, Elisa
•
Roth, Stefan
•
Russakovsky, Olga
•
Sattler, Torsten
•
Varol, Gül
Date Issued

2025

Publisher

Springer Science and Business Media Deutschland GmbH

Published in
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
Series title/Series vol.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 15134 LNCS

ISSN (of the series)

1611-3349

0302-9743

Start page

467

End page

484

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
EPFL  
Event nameEvent acronymEvent placeEvent date
18th European Conference on Computer Vision

Milan, Italy

2024-09-29 - 2024-10-04

FunderFunding(s)Grant NumberGrant URL

EPFL School of Life Sciences

CARIGEST SA

Available on Infoscience
January 26, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/244760
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés