Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. PPAR(gamma) and glucose homeostasis
 
review article

PPAR(gamma) and glucose homeostasis

Picard, Frédéric
•
Auwerx, Johan  
2002
Annual review of nutrition

Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor involved in the control of metabolism. Research on PPARgamma is oriented towards understanding its role in insulin sensitization, which was inspired by the discovery that antidiabetic agents, the thiazolidinediones, were agonists for PPARgamma. PPARgamma stimulation improves glucose tolerance and insulin sensitivity in type 2 diabetic patients and in animal models of insulin resistance through mechanisms that are incompletely understood. Upon activation, PPARgamma heterodimerizes with retinoid X receptor, recruits specific cofactors, and binds to responsive DNA elements, thereby stimulating the transcription of target genes. Because PPARgamma is highly enriched in adipose tissue and because of its major role in adipocyte differentiation, it is thought that the effects of PPARgamma in adipose tissue are crucial to explain its role in insulin sensitization, but recent studies have highlighted the contribution of other tissues as well. Although relatively potent for their insulin-sensitizing action, currently marketed PPARgamma activators have some important undesirable side effects. These concerns led to the discovery of new ligands with potent antidiabetic properties but devoid of certain of these side effects. Data from human genetic studies and from PPARgamma heterozygous knockout mice indicate that a reduction in PPARgamma activity could paradoxically improve insulin sensitivity. These findings suggest that modulation of PPARgamma activity by partial agonists or compounds that affect cofactor recruitment might hold promise for the treatment of insulin resistance.

  • Details
  • Metrics
Type
review article
DOI
10.1146/annurev.nutr.22.010402.102808
PubMed ID

12055342

Author(s)
Picard, Frédéric
Auwerx, Johan  
Date Issued

2002

Published in
Annual review of nutrition
Volume

22

Start page

167

End page

97

Subjects

Gene Expression Regulation

•

Thiazolidinediones

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LISP  
Available on Infoscience
April 2, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36850
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés