Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Determining 1D fast-ion velocity distribution functions from ion cyclotron emission data using deep neural networks
 
research article

Determining 1D fast-ion velocity distribution functions from ion cyclotron emission data using deep neural networks

Schmidt, B. S.
•
Salewski, M.
•
Reman, B.
Show more
May 1, 2021
Review Of Scientific Instruments

The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function f(upsilon(perpendicular to)) of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network architecture (number of layers and number of computational nodes in each layer) and hyperparameters (learning rate and number of learning iterations) are fine-tuned using a bottom-up approach based on cross-validation. Thus, the optimal mapping (g; theta) of the neural network in terms of the number of nodes, the number of layers, and the values of the hyperparameters, where theta is the learned model parameters, is determined by comparing many different configurations of the network on the same training and test set and choosing the best one based on its average test error. The training and test sets are generated by computing random ICE velocity distribution functions f and their corresponding ICE signals s by modeling the relationship as the linear matrix equation Wf = s. The simulated ICE signals are modeled as edge ICE signals at LHD. The network predictions for f based on ICE signals s are on many simulated ICE signal examples closer to the true velocity distribution function than that obtained by 0th-order Tikhonov regularization, although there might be qualitative differences in which features one technique is better at predicting than the other. Additionally, the network computations are much faster. Adapted versions of the network can be applied to future experimental ICE data to infer fast-ion velocity distribution functions. Published under license by AIP Publishing.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Determining 1D Fast-Ion Velocity Distribution Functions from Ion Cyclotron Emission Data Using Deep Neural Networks.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

645.54 KB

Format

Adobe PDF

Checksum (MD5)

c16040d1225dfb164afe773b8aa569d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés