Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Polymeric variable optical attenuators based on magnetic sensitive stimuli materials
 
research article

Polymeric variable optical attenuators based on magnetic sensitive stimuli materials

De Pedro, S.
•
Cadarso, V. J.  
•
Ackermann, T. N.
Show more
2014
Journal Of Micromechanics And Microengineering

Magnetically-actuable, polymer-based variable optical attenuators (VOA) are presented in this paper. The design comprises a cantilever which also plays the role of a waveguide and the input/output alignment elements for simple alignment, yet still rendering an efficient coupling. Magnetic properties have been conferred to these micro-opto-electromechanical systems (MOEMS) by implementing two different strategies: in the first case, a magnetic sensitive stimuli material (M-SSM) is obtained by a combination of polydimethylsiloxane (PDMS) and ferrofluid (FF) in ratios between 14.9 wt % and 29.9 wt %. An M-SSM strip under the waveguide-cantilever, defined with soft lithography (SLT), provides the required actuation capability. In the second case, specific volumes of FF are dispensed at the end of the cantilever tip (outside the waveguide) by means of inkjet printing (IJP), obtaining the required magnetic response while holding the optical transparency of the waveguide-cantilever. In the absence of a magnetic field, the waveguide-cantilever is aligned with the output fiber optics and thus the intrinsic optical losses can be obtained. Numerical simulations, validated experimentally, have shown that, for any cantilever length, the VOAs defined by IJP present lower intrinsic optical losses than their SLT counterparts. Under an applied magnetic field (B-app), both VOA configurations experience a misalignment between the waveguide-cantilever and the output fiber optics. Thus, the proposed VOAs modulate the output power as a function of the cantilever displacement, which is proportional to B-app. The experimental results for the three different waveguide-cantilever lengths and six different FF concentrations (three per technology) show maximum deflections of 220 mu m at 29.9 wt % of FF for VOA(SLT) and 250 mu m at 22.3 wt % FF for VOA(IJP), at 0.57 kG for both. These deflections provide maximum actuation losses of 16.1 dB and 18.9 dB for the VOA(SLT) and VOA(IJP), respectively.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Polymeric variable optical attenuators based on magnetic sensitive stimuli materials.pdf

Access type

restricted

Size

1.84 MB

Format

Adobe PDF

Checksum (MD5)

b054c803219f4447fadb6aeb767da7c8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés