Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Non-coherent Network Coding: An Arbitrarily Varying Channel Approach
 
report

Non-coherent Network Coding: An Arbitrarily Varying Channel Approach

Jafari Siavoshani, Mahdi  
•
Yang, Shenghao
•
Yeung, Raymond
2012

In this paper, we propose an “arbitrarily varying channel” (AVC) approach to study the capacity of non-coherent transmission in a network that employs randomized linear network coding. The network operation is modeled by a matrix channel over a finite field where the transfer matrix changes arbitrarily from time-slot to time-slot but up to a known distribution over its rank. By extending the AVC results to this setup, we characterize the capacity of such a non-coherent transmission scheme and show that subspace coding is optimal for achieving the capacity. By imposing a probability distribution over the state space of an AVC, we obtain a channel which we called “partially arbitrarily varying channel” (PAVC). In this work, we characterize the “randomized” as well as the “deterministic” code capacity of a PAVC under the average error probability criterion. Although we introduce the PAVC to model the non-coherent network coding, this extension to an AVC might be of its own interest as well.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

NetCodeModel-TechRep-v3.pdf

Access type

openaccess

Size

214.58 KB

Format

Adobe PDF

Checksum (MD5)

dde0e2940dfd84982e4234ddf1acd5d8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés