Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Rankin-Selberg coefficients in large arithmetic progressions
 
research article

Rankin-Selberg coefficients in large arithmetic progressions

Kowalski, Emmanuel
•
Lin, Yongxiao  
•
Michel, Philippe
June 9, 2023
Science China-Mathematics

Let (?(f) (n))(n=1) be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f. We prove that, for any fixed ? > 0, under the Ramanujan-Petersson conjecture for GL(2) Maass forms, the Rankin-Selberg coefficients (?(f) (n)(2))(n=1) admit a level of distribution ? = 2/5 + 1/260 - ? in arithmetic progressions.

  • Details
  • Metrics
Type
research article
DOI
10.1007/s11425-023-2155-6
Web of Science ID

WOS:001003280800001

Author(s)
Kowalski, Emmanuel
Lin, Yongxiao  
Michel, Philippe
Date Issued

2023-06-09

Publisher

SCIENCE PRESS

Published in
Science China-Mathematics
Subjects

Mathematics, Applied

•

Mathematics

•

arithmetic progressions

•

rankin-selberg l-functions

•

delta-method

•

kloosterman sums

•

bilinear-forms

•

divisor

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TAN  
Available on Infoscience
June 19, 2023
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/198403
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés