Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Agito ergo sum: Correlates of spatio-temporal motion characteristics during fMRI
 
research article

Agito ergo sum: Correlates of spatio-temporal motion characteristics during fMRI

Bolton, Thomas A. W.  
•
Kebets, Valeria
•
Glerean, Enrico
Show more
April 1, 2020
Neuroimage

The impact of in-scanner motion on functional magnetic resonance imaging (fMRI) data has a notorious reputation in the neuroimaging community. State-of-the-art guidelines advise to scrub out excessively corrupted frames as assessed by a composite framewise displacement (FD) score, to regress out models of nuisance variables, and to include average FD as a covariate in group-level analyses. Here, we studied individual motion time courses at time points typically retained in fMRI analyses. We observed that even in this set of putatively clean time points, motion exhibited a very clear spatio-temporal structure, so that we could distinguish subjects into separate groups of movers with varying characteristics. Then, we showed that this spatio-temporal motion cartography tightly relates to a broad array of anthropometric and cognitive factors. Convergent results were obtained from two different analytical perspectives: univariate assessment of behavioural differences across mover subgroups unraveled defining markers, while subsequent multivariate analysis broadened the range of involved factors and clarified that multiple motion/behaviour modes of covariance overlap in the data. Our results demonstrate that even the smaller episodes of motion typically retained in fMRI analyses carry structured, behaviourally relevant information. They call for further examinations of possible biases in current regression-based motion correction strategies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S1053811919310249-main.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

4.2 MB

Format

Adobe PDF

Checksum (MD5)

e13bbec202fcab683e5083bfe579d358

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés