Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Analytical modeling of the gas-filling dynamics in photonic crystal fibers
 
research article

Analytical modeling of the gas-filling dynamics in photonic crystal fibers

Dicaire, Isabelle
•
Beugnot, Jean-Charles
•
Thévenaz, Luc  
2010
Applied Optics

We present useful expressions predicting the filling time of gaseous species inside photonic crystal fibers. Based on the theory of diffusion, this gas-filling model can be applied to any given fiber geometry or length by calculating diffusion coefficients. This was experimentally validated by monitoring the filling process of acetylene gas in several fiber samples of various geometries and lengths. The measured filling times agree well, within ±15%, with the predicted values for all fiber samples. In addition, the pressure dependence of the diffusion coefficient was experimentally verified by filling a given fiber sample with acetylene gas at various pressures. Finally, optimized conditions for gas–light interaction are determined by considering the gas flow dynamics in the design of microstructured fibers for gas detection and all-fiber gas cell applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

dicaire_dynamics_final.pdf

Access type

openaccess

Size

501.96 KB

Format

Adobe PDF

Checksum (MD5)

fa0c5c3144c74e0e55156059d55dbd00

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés