Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stable Al2O3 Encapsulation of MoS2 ‐FETs Enabled by CVD Grown h‐BN
 
research article

Stable Al2O3 Encapsulation of MoS2 ‐FETs Enabled by CVD Grown h‐BN

Piacentini, Agata
•
Marian, Damiano
•
Schneider, Daniel S.
Show more
April 29, 2022
Advanced Electronic Materials

Molybdenum disulfide (MoS2) has great potential as a two-dimensional semiconductor for electronic and optoelectronic application, but its high sensitivity to environmental adsorbents and charge transfer from neighboring dielectrics can lead to device variability and instability. Aluminum oxide (Al2O3) is widely used as an encapsulation layer in (opto)-electronics, but it leads to detrimental charge transfer n-doping to MoS2. Here, this work reports a scalable encapsulation approach for MoS2 field-effect transistors (FETs) where hexagonal boron nitride (h-BN) monolayers are employed as a barrier layer in-between each of the Al2O3 and MoS2 interfaces. These devices exhibit a significant reduction of charge transfer, when compared to structures without h-BN. This benefit of h-BN in the gate stack is confirmed by ab initio density functional theory calculations. In addition, the devices with h-BN layers show very low hysteresis even under ambient operating conditions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Piacentini et al. - 2022 - Stable Al2O3 Encapsulation o.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

2.14 MB

Format

Adobe PDF

Checksum (MD5)

8cfee1162ebf81133d42fbce9a6c3a86

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés