Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transient brain activity dynamics discriminate levels of consciousness during anesthesia
 
research article

Transient brain activity dynamics discriminate levels of consciousness during anesthesia

Ensel, Scott
•
Uhrig, Lynn
•
Ozkirli, Ayberk  
Show more
June 10, 2024
Communications Biology

The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.|An fMRI study on anesthetized macaque monkeys examines how different depths of anesthesia uniquely affect brain networks temporal dynamics, suggesting that brain dynamics could be used as a cortical signature to gauge consciousness levels clinically.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s42003-024-06335-x.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.24 MB

Format

Adobe PDF

Checksum (MD5)

3be1d68818ebe1acb17e124cfc7870a8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés