Publication: Multilinear Low-Rank Tensors on Graphs & Applications
Multilinear Low-Rank Tensors on Graphs & Applications
cris.legacyId | 222948 | |
cris.virtual.author-scopus | 7004114381 | |
cris.virtual.department | LTS2 | |
cris.virtual.orcid | 0000-0002-9070-900X | |
cris.virtual.parent-organization | IEM | |
cris.virtual.parent-organization | STI | |
cris.virtual.parent-organization | EPFL | |
cris.virtual.sciperId | 232886 | |
cris.virtual.sciperId | 264158 | |
cris.virtual.sciperId | 120906 | |
cris.virtual.unitId | 10380 | |
cris.virtual.unitManager | Vandergheynst, Pierre | |
cris.virtualsource.author-scopus | 6f598057-2bd4-4bad-83a7-9b2c4da1cc68 | |
cris.virtualsource.author-scopus | 8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc | |
cris.virtualsource.author-scopus | d6a6cef3-95f2-4ccd-982c-2469b7894b21 | |
cris.virtualsource.department | 6f598057-2bd4-4bad-83a7-9b2c4da1cc68 | |
cris.virtualsource.department | 8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc | |
cris.virtualsource.department | d6a6cef3-95f2-4ccd-982c-2469b7894b21 | |
cris.virtualsource.orcid | 6f598057-2bd4-4bad-83a7-9b2c4da1cc68 | |
cris.virtualsource.orcid | 8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc | |
cris.virtualsource.orcid | d6a6cef3-95f2-4ccd-982c-2469b7894b21 | |
cris.virtualsource.parent-organization | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
cris.virtualsource.parent-organization | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
cris.virtualsource.parent-organization | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
cris.virtualsource.parent-organization | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
cris.virtualsource.rid | 6f598057-2bd4-4bad-83a7-9b2c4da1cc68 | |
cris.virtualsource.rid | 8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc | |
cris.virtualsource.rid | d6a6cef3-95f2-4ccd-982c-2469b7894b21 | |
cris.virtualsource.sciperId | 6f598057-2bd4-4bad-83a7-9b2c4da1cc68 | |
cris.virtualsource.sciperId | 8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc | |
cris.virtualsource.sciperId | d6a6cef3-95f2-4ccd-982c-2469b7894b21 | |
cris.virtualsource.unitId | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
cris.virtualsource.unitManager | 31594383-8479-4d04-aa2a-e6b51fa5d974 | |
datacite.rights | openaccess | |
dc.contributor.author | Shahid, Nauman | |
dc.contributor.author | Grassi, Francesco | |
dc.contributor.author | Vandergheynst, Pierre | |
dc.date.accessioned | 2016-11-16T10:41:52 | |
dc.date.available | 2016-11-16T10:41:52 | |
dc.date.created | 2016-11-16 | |
dc.date.issued | 2016 | |
dc.date.modified | 2025-01-23T21:40:00.863644Z | |
dc.description.abstract | We propose a new framework for the analysis of low- rank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multi- linear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization problems for approximately solving low-rank tensor inverse problems, such as tensor Robust PCA. The whole frame- work is named as “Multilinear Low-rank tensors on Graphs (MLRTG)”. Our theoretical analysis shows: 1) MLRTG stands on the notion of approximate stationarity of multi- dimensional signals on graphs and 2) the approximation error depends on the eigen gaps of the graphs. We demonstrate applications for a wide variety of 4 artificial and 12 real tensor datasets, such as EEG, FMRI, BCI, surveillance videos and hyperspectral images. Generalization of the tensor concepts to non-euclidean domain, orders of magnitude speed-up, low-memory requirement and significantly enhanced performance at low SNR are the key aspects of our framework. | |
dc.description.sponsorship | LTS2 | |
dc.identifier.arxiv | 1611.04835 | |
dc.identifier.uri | ||
dc.relation | https://infoscience.epfl.ch/record/222948/files/cvpr_arxiv.pdf | |
dc.title | Multilinear Low-Rank Tensors on Graphs & Applications | |
dc.type | text::conference output::conference paper not in proceedings | |
dspace.entity.type | Publication | |
dspace.file.type | Preprint | |
dspace.legacy.oai-identifier | oai:infoscience.tind.io:222948 | |
epfl.lastmodified.email | ||
epfl.legacy.itemtype | Conference Papers | |
epfl.legacy.submissionform | CONF | |
epfl.oai.currentset | OpenAIREv4 | |
epfl.oai.currentset | STI | |
epfl.oai.currentset | conf | |
epfl.peerreviewed | REVIEWED | |
epfl.writtenAt | EPFL | |
oaire.version |