Publication:

Multilinear Low-Rank Tensors on Graphs & Applications

cris.legacyId

222948

cris.virtual.author-scopus

7004114381

cris.virtual.department

LTS2

cris.virtual.orcid

0000-0002-9070-900X

cris.virtual.parent-organization

IEM

cris.virtual.parent-organization

STI

cris.virtual.parent-organization

EPFL

cris.virtual.sciperId

232886

cris.virtual.sciperId

264158

cris.virtual.sciperId

120906

cris.virtual.unitId

10380

cris.virtual.unitManager

Vandergheynst, Pierre

cris.virtualsource.author-scopus

6f598057-2bd4-4bad-83a7-9b2c4da1cc68

cris.virtualsource.author-scopus

8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc

cris.virtualsource.author-scopus

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.department

6f598057-2bd4-4bad-83a7-9b2c4da1cc68

cris.virtualsource.department

8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc

cris.virtualsource.department

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.orcid

6f598057-2bd4-4bad-83a7-9b2c4da1cc68

cris.virtualsource.orcid

8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc

cris.virtualsource.orcid

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.parent-organization

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.rid

6f598057-2bd4-4bad-83a7-9b2c4da1cc68

cris.virtualsource.rid

8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc

cris.virtualsource.rid

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.sciperId

6f598057-2bd4-4bad-83a7-9b2c4da1cc68

cris.virtualsource.sciperId

8b4a6fdb-3ca5-4143-9111-6e27d5d0a4cc

cris.virtualsource.sciperId

d6a6cef3-95f2-4ccd-982c-2469b7894b21

cris.virtualsource.unitId

31594383-8479-4d04-aa2a-e6b51fa5d974

cris.virtualsource.unitManager

31594383-8479-4d04-aa2a-e6b51fa5d974

datacite.rights

openaccess

dc.contributor.author

Shahid, Nauman

dc.contributor.author

Grassi, Francesco

dc.contributor.author

Vandergheynst, Pierre

dc.date.accessioned

2016-11-16T10:41:52

dc.date.available

2016-11-16T10:41:52

dc.date.created

2016-11-16

dc.date.issued

2016

dc.date.modified

2025-01-23T21:40:00.863644Z

dc.description.abstract

We propose a new framework for the analysis of low- rank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multi- linear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization problems for approximately solving low-rank tensor inverse problems, such as tensor Robust PCA. The whole frame- work is named as “Multilinear Low-rank tensors on Graphs (MLRTG)”. Our theoretical analysis shows: 1) MLRTG stands on the notion of approximate stationarity of multi- dimensional signals on graphs and 2) the approximation error depends on the eigen gaps of the graphs. We demonstrate applications for a wide variety of 4 artificial and 12 real tensor datasets, such as EEG, FMRI, BCI, surveillance videos and hyperspectral images. Generalization of the tensor concepts to non-euclidean domain, orders of magnitude speed-up, low-memory requirement and significantly enhanced performance at low SNR are the key aspects of our framework.

dc.description.sponsorship

LTS2

dc.identifier.arxiv

1611.04835

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/131090

dc.relation

https://infoscience.epfl.ch/record/222948/files/cvpr_arxiv.pdf

dc.title

Multilinear Low-Rank Tensors on Graphs & Applications

dc.type

text::conference output::conference paper not in proceedings

dspace.entity.type

Publication

dspace.file.type

Preprint

dspace.legacy.oai-identifier

oai:infoscience.tind.io:222948

epfl.lastmodified.email

alain.borel@epfl.ch

epfl.legacy.itemtype

Conference Papers

epfl.legacy.submissionform

CONF

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

STI

epfl.oai.currentset

conf

epfl.peerreviewed

REVIEWED

epfl.writtenAt

EPFL

oaire.version

http://purl.org/coar/version/c_71e4c1898caa6e32

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cvpr_arxiv.pdf
Size:
10.67 MB
Format:
Adobe Portable Document Format
Description:
Preprint

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: