Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Feeding active neurons: (re)emergence of a nursing role for astrocytes
 
research article

Feeding active neurons: (re)emergence of a nursing role for astrocytes

Bouzier-Sore, Anne-Karine
•
Merle, Michel
•
Magistretti, Pierre J  
Show more
2002
Journal of physiology, Paris

Despite unquestionable evidence that glucose is the major energy substrate for the brain, data collected over several decades with different approaches suggest that lactate may represent a supplementary metabolic substrate for neurons. Starting with the pioneering work of McIlwain in the early 1950s which showed that lactate can sustain the respiratory rate of small brain tissue pieces, this idea receives confirmation with more recent studies using nuclear magnetic resonance spectroscopy undoubtedly demonstrating that lactate is efficiently oxidized by neurons, both in vitro and in vivo. Not only is lactate able to maintain ATP levels and promote neuronal survival but it was also found to support neuronal activity, at least if low levels of glucose are present. Despite the early suggestion for a role of astrocytes in metabolic supply to neurons, it is only recently however that they have been considered as a potential source of lactate for neurons. Moreover, it has been proposed that astrocytes might provide lactate to neurons in response to enhanced synaptic activity by a well-characterized mechanism involving glutamate uptake. The description of specific transporters for lactate on both astrocytes and neurons further suggest that there exist a coordinated mechanism of lactate exchange between the two cell types. Thus it is proposed that astrocytes play a nursing role toward neurons by providing lactate as an additional energy substrate especially during periods of enhanced synaptic activity. The importance of this metabolic cooperation within the central nervous system, although not unique if compared to other organs, still remains to be explored.

  • Details
  • Metrics
Type
research article
DOI
10.1016/S0928-4257(02)00016-5
PubMed ID

12445906

Author(s)
Bouzier-Sore, Anne-Karine
Merle, Michel
Magistretti, Pierre J  
Pellerin, Luc
Date Issued

2002

Published in
Journal of physiology, Paris
Volume

96

Issue

3-4

Start page

273

End page

82

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LNDC  
Available on Infoscience
January 8, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/45225
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés