Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs
 
research article

Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs

Zhang, Chunmin  
•
Jazaeri, Farzan  
•
Borghello, Giulio
Show more
2018
IEEE Transactions on Nuclear Science

This paper characterizes and models the effects of total ionizing dose (TID) up to 1 Grad(SiO2) on the drain leakage current of nMOSFETs fabricated with a commercial 28-nm bulk CMOS process. Experimental comparisons among individual nMOSFETs of various sizes provide insight into the TID-induced lateral parasitic devices, which contribute the most to the significant increase up to four orders of magnitude in the drain leakage current. We introduce a semiempirical physics-based approach using only three parameters to model the parallel parasitic and total drain leakage current as a function of TID. Taking into account the gate independence of the drain leakage current at high TID levels, we model the lateral parasitic device as a gateless charge-controlled device by using the simplified charge-based Enz-Krummenaker-Vittoz (EKV) MOSFET model. This approach enables us to extract the equivalent density of trapped charges related to the shallow trench isolation oxides. The adopted simplified EKV MOSFET model indicates the weak inversion operation of the lateral parasitic devices.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

final_version_Oct23.pdf

Type

Postprint

cris-layout.advanced-attachment.oaire.version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

1.16 MB

Format

Adobe PDF

Checksum (MD5)

5de5fe31da8cde68c3dce73152d4adfc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés