Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Generalized Mullineux Involution And Perverse Equivalences
 
research article

Generalized Mullineux Involution And Perverse Equivalences

Gerber, Thomas  
•
Jacon, Nicolas
•
Norton, Emily
June 1, 2020
Pacific Journal Of Mathematics

We define a generalization of the Mullineux involution on multipartitions using the theory of crystals for higher-level Fock spaces. Our generalized Mullineux involution turns up in representation theory via two important derived functors on cyclotomic Cherednik category O : Losev's "kappa = 0" wallcrossing, and Ringel duality.

  • Details
  • Metrics
Type
research article
DOI
10.2140/pjm.2020.306.487
Web of Science ID

WOS:000575404000004

Author(s)
Gerber, Thomas  
Jacon, Nicolas
Norton, Emily
Date Issued

2020-06-01

Published in
Pacific Journal Of Mathematics
Volume

306

Issue

2

Start page

487

End page

517

Subjects

Mathematics

•

mullineux involution

•

hecke algebra

•

cherednik algebra

•

symmetric-groups

•

hecke algebras

•

crystal bases

•

category-o

•

representations

•

multipartitions

•

roots

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
GR-TES  
Available on Infoscience
October 21, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/172641
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés