Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Deletion of CREB-Regulated Transcription Coactivator 1 Induces Pathological Aggression, Depression-Related Behaviors, and Neuroplasticity Genes Dysregulation in Mice
 
research article

Deletion of CREB-Regulated Transcription Coactivator 1 Induces Pathological Aggression, Depression-Related Behaviors, and Neuroplasticity Genes Dysregulation in Mice

Breuillaud, L.
•
Rossetti, C.
•
EM, Meylan
Show more
2012
Biological Psychiatry

Background: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression. We previously provided evidence that Bdnf expression critically rely on a potent CREB coactivator called CREB-regulated transcription coactivator 1 (CRTC1). Methods: To further evaluate the role of CRTC1 in the brain, we generated a knockout mouse line and analyzed its behavioral and molecular phenotype. Results: We found that mice lacking CRTC1 associate neurobehavioral endophenotypes related to mood disorders. Crtc1(-/-) mice exhibit impulsive aggressiveness, social withdrawal, and decreased sexual motivation, together with increased behavioral despair, anhedonia, and anxiety-related behavior in the novelty-induced hypophagia test. They also present psychomotor retardation as well as increased emotional response to stressful events. Crtc1(-/-) mice have a blunted response to the antidepressant fluoxetine in behavioral despair paradigms, whereas fluoxetine normalizes their aggressiveness and their behavioral response in the novelty-induced hypophagia test. Crtc1(-/-) mice strikingly show, in addition to a reduced dopamine and serotonin turnover in the prefrontal cortex, a concomitant decreased expression of several susceptibility genes involved in neuroplasticity, including Bdnf, its receptor TrkB, the nuclear receptors Nr4a1-3, and several other CREB-regulated genes. Conclusions: Collectively, these findings support a role for the CRTC1-CREB pathway in mood disorders etiology and behavioral response to antidepressants and identify CRTC1 as an essential coactivator of genes involved in mood regulation.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.biopsych.2012.04.011
Web of Science ID

WOS:000308714000006

Author(s)
Breuillaud, L.
Rossetti, C.
EM, Meylan
Mérinat, C.
Halfon, O.
PJ, Magistretti
Cardinaux, JR.
Date Issued

2012

Publisher

Elsevier Science Inc

Published in
Biological Psychiatry
Volume

72

Issue

7

Start page

528

End page

536

Subjects

Antidepressant

•

BDNF

•

CREB

•

fluoxetine

•

major depression

•

mood disorders

•

neuroplasticity genes regulation

•

transcriptional coactivator

Editorial or Peer reviewed

NON-REVIEWED

Written at

EPFL

EPFL units
LNDC  
Available on Infoscience
August 2, 2012
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/84357
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés