Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates
 
research article

Aptamer Recognition of Multiplexed Small-Molecule-Functionalized Substrates

Nakatsuka, Nako  
•
Cao, Huan
•
Deshayes, Stephanie
Show more
May 31, 2018
ACS Applied Materials & Interfaces

Aptamers are chemically synthesized oligonucleotides or peptides with molecular recognition capabilities. We investigated recognition of substrate-tethered small-molecule targets, using neurotransmitters as examples, and fluorescently labeled DNA aptamers. Substrate regions patterned via microfluidic channels with dopamine or   l-tryptophan were selectively recognized by previously identified dopamine or l-tryptophan aptamers, respectively. The on-substrate dissociation constant determined for the dopamine aptamer was comparable to, though, slightly greater than the previously determined solution dissociation constant. Using prefunctionalized neurotransmitter-conjugated oligo(ethylene glycol) alkanethiols and microfluidics patterning, we produced multiplexed substrates to capture and to sort aptamers. Substrates patterned with l-3,4-dihydroxyphenylalanine, l-threo-dihydroxyphenylserine, and l-5-hydroxytryptophan enabled comparison of the selectivity of the dopamine aptamer for different targets via simultaneous determination of in situ binding constants. Thus, beyond our previous demonstrations of recognition by protein binding partners (i.e., antibodies and G-protein-coupled receptors), strategically optimized small-molecule-functionalized substrates show selective recognition of nucleic acid binding partners. These substrates are useful for side-by-side target comparisons and future identification and characterization of novel aptamers targeting neurotransmitters or other important small molecules.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

images_large_am-2018-02837v_0010.jpg

Type

Thumbnail

Access type

openaccess

License Condition

CC BY

Size

139.15 KB

Format

JPEG

Checksum (MD5)

34ebd8f71c2ee476e0b7e3ceed246285

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés