Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Sizing Studies for Detecting Graphical Models
 
Loading...
Thumbnail Image
working paper

Sizing Studies for Detecting Graphical Models

Morgenthaler, Stephan  
•
Shevlyakova, Maya  
2012

The ability to identify reliably a positive or negative partial correlation between the expression levels of two genes is determined by the number p of genes, the number n of analyzed samples, and the statistical properties of the measurements. Classical statistical theory teaches us that the product of the root sample size multiplied by the size of the partial correlation is the crucial quantity. But this has to be combined with some adjustment for multiplicity depending on p, which makes the classical analysis somewhat arbitrary. We investigate this problem through the lens of the Kullback-Leibler divergence, which is a measure of the average information for detecting an effect. We conclude that commonly sized studies in genetical epidemiology are not able to reliably detect moderately strong links.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

elsarticleREV_2.pdf

Access type

restricted

Size

467.24 KB

Format

Adobe PDF

Checksum (MD5)

a0e0191fbaf15d26a483245783d64fdd

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés